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Abstract

The dynamics of human and animal behavior within a perceptual decision made based on a single stationary stimulus
are consistent with sequential statistical testing (e.g. Bogacz et al. 2006) instantiated as the discrete-time sequential prob-
ability ratio test (SPRT; Wald & Wolfowitz, 1948) or its continuous time analogue, the diffusion model (DDM; Ratcliff,
1978). In this simple domain, the SPRT/DDM with a fixed threshold is both reward-rate- and Bayes-optimal.

However, in nonstationary or multihypothesis settings, these criteria need not be equivalent: fixed threshold policies
are not optimal under either criterion, and there is no systematic framework to compute reward-rate-optimal policies
(though cf. Mahadevan, 1996; Dayanik & Yu, 2013). Consequently, work on the dynamics of decisions over nonstationary
stimuli or multiple choices has either explored Bayes-optimal policies by dynamic programming (e.g. Frazier & Yu, 2008;
Drugowitsch et al. 2012) or used fixed threshold policies (e.g. McMillen & Holmes 2006, Norris 2009).

We use our model of the dynamics of multi-stimulus decision making to explore the differences between fixed-threshold
and Bayes-optimal policies in different tasks, exploiting the connections between Markov decision processes, Bayesian
inference, and diffusion (e.g. Dayan & Daw, 2008) to do so. We show that even in simple tasks, predictions can depend
on whether we assume the organism uses the fixed-threshold policy or the Bayes-optimal policy. Specifically, we show
that different explanations for the flanker effect (Yu, et al. 2009; White et al. 2011) are normative under different choices of
the action set and policy space. We additionally show that the Bayes-optimal policy makes the unusual prediction that as
the posterior probability of some hypotheses drops due to evidence, the decision criterion for the remaining hypotheses
should rise. We speculate that the intention superiority effect in prospective memory could be evidence of such a rise.
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1 Introduction

In very simple settings, it is possible to investigate the question of how closely human or animal behavior matches
normatively optimal performance. In these cases – most notably, a perceptual two-alternative forced-choice (2AFC)
decision based on a single stationary stimulus, human and animal behavior is close to statistically optimal under multiple
different criteria [9, 10]. Beyond these simple cases, there are different ways in which constraints and goals can interact,
making it difficult to distinguish between an agent performing suboptimally and one performing near-optimally but
with respect to different constraints or goals. Thus, normative approaches to complex behavior tend to search for the
conditions humans or animals optimize for rather than signatures for optimal behavior itself, including agent goals [1],
bounds on computation [12], heuristics [7], or restrictions on the optimization algorithm itself [13].

We focus on an extension of the 2AFC setting to choices that admit multiple stimuli from perception and memory.
Even this simple extension is nontrivial and an area of current research [e.g. 4, 14, 17]. Our framework, while similar
to these other approaches, stands apart in (a) naturally capturing a variety of tasks of interest in cognitive psychology
and neuroscience within a single framework [16] and (b) allowing multiple stimuli to be mapped to the same response,
thereby decoupling the decision from stimulus identification. Even in this simple setting, the problem specification is
challenging. For example: is the policy space that subjects explore unconstrained, or constrained to the space of fixed-
threshold policies? Is the action space restricted to sampling all stimuli, or to sampling each stimulus separately?

To investigate this, we exploit the connections between dynamical systems, Bayesian inference, and Markov decision
processes [e.g. 2] to flexibly move among equivalent formulations of the problem. We begin with Bayesian inference, use
its continuum limit approximate a belief transition density, and use this transition density in a Markov decision process
to derive Bayes-optimal policies. We provide a number of insights: first, we show how different proposed explanations
for the classic Flanker effect can be thought of as normative consequences of different restrictions on the policy space and
the action set. Next, we compute the optimal policies for the AX Continuous performance test (AX-CPT) and prospective
memory (PM) tasks, two tasks in which there is not a one-to-one mapping from stimuli to responses. We show how the
optimal policies are not equivalent to fixed-threshold policies on the posterior probability of the response, and identify a
signature property of optimal policies for these tasks: the increase of the response criterion on one stimulus as the other
stimulus or stimuli become better-identified. We speculate about empirical findings that may be a consequence of this
property, including the intention superiority effect in the prospective memory literature.

2 Theoretical framework and background

Suppose that an agent is interested in inferring the true value of a noisily observed target stimulus G that can take on two
values g0, g1 based on noisy i.i.d. samples sG. It can then perform the following sequence of Bayes updates:

Pτ (G = gi) ∝ P (sG | G = gi)Pτ−1(G = gi); i ∈ {0, 1}; τ > 0; (1)

Where Pτ (·) is the posterior probability of the argument being true given observations until time τ and we omit the priors
P0(·) for brevity. In this setting, the agent can select a threshold and stop sampling at the first point at which the posterior
of either stimulus exceeds this threshold. This policy is a notational variant of the Sequential Probability Ratio Test (SPRT;
[18]). For a stationary distribution of sG, an appropriately selected threshold will simultaneously optimize at least two
reward criteria: (a) reward rate, and (b) Bayes risk. If the distribution of sG is Bernoulli, this problem is isomorphic to
the Tiger problem in the study of partially-observable Markov decision processes (POMDPs) [11]. However, consider the
slightly more complicated setting:

Pτ (C = ci, G = gj) ∝ P (sC , sG | C = ci, G = gj)Pτ−1(C = ci, G = gj); i ∈ {0, 1}, j ∈ {0, 1} (2)

We have added a second stimulus C which we deem the context to distinguish it from the target stimulus G. This context
stimulus can be perceptual, or a previously encoded stimulus being retrieved from memory. In the latter case, we assume
the context stimulus is retrieved from memory with decay modeled by an AR(1) process (see [16] for detail).

Within this framework, a task is defined by two properties: first, the onset and offset times of the stimuli; second, a map-
ping from the joint identity of the two stimuli to the correct response. For example, if the stimuli appear simultaneously
and the task goal is to identify the target stimulus G while ignoring the context, the task is the Flanker or Stroop. If the
stimuli appear asynchronously and the goal is to make one response to c0 trials regardless of G and otherwise identify
the G stimulus, then the task is the prospective memory task [5]. Other tasks can be represented similarly, and in this
way our model is an abstract model of multi-stimulus decision making applicable to a variety of tasks.

To identify the true context and target pair, we could define a fixed threshold over their joint density, which would make
this model equivalent to the multihypothesis sequential probability ratio test [MSPRT; 3]. The MSPRT is an asymptoti-
cally optimal test in the sense that it approximates the Bayes-optimal test as accuracy approaches 100%. However, such
rule may lose optimality guarantees if multiple pairs of context and stimuli map to the same decision. Alternatively,
a fixed-threshold decision rule can be designed by setting a fixed threshold on the response probability computed by
appropriately combining context-target probabilities using the true response rule.
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This is a sensible heuristic because the space of fixed threshold policies over the response posterior (henceforth: FTR
policies) is low-dimensional and therefore relatively easy to explore quickly, and was used in past work to simulate plau-
sible behavior patterns from multiple tasks under the same parameterization [16]. In contrast, the Bayes-risk optimal
(henceforth: BRO) policies must be defined over the full belief simplex [3]. Presently a fully analytic way leading to a
closed-form optimal test is not available, and in fact it may not, in general, exist. However, the question within neuro-
science is far from settled, with some recent work suggesting that subjects do use or approximate nonstationary policies,
specifically ones that either accelerate the sampling rate or lower the threshold as time passes [4, 17].

We explore the consequence of the FTR and BRO policies for a number of different tasks implemented using the frame-
work described above. To do so, we re-specify the problem as a discrete-time POMDP for which we can find optimal
policies by standard methods. The states are the four possible identities of the stimulus pair ([ci, gj ], i ∈ {0, 1}, j ∈ {0, 1})
and the actions are to sample both stimuli, respond left, and respond right. In some cases, we also add the actions to
sample sC and sG independently. The transitions are trivial in that the sampling action stays at the current stimulus
state and the response actions end the episode. The rewards are specified in terms of costs of −1 for a sampling either
stimulus a −40 for an error response. Sampling both stimuli simultaneously costs −1.5, since we assume cost includes
opportunity cost and effort cost, and the former is not duplicated when sampling both together. The specific parameter
values are not important for our claims – outside of degenerate cases, the qualitative patterns are similar over the space.

We intentionally leave the observation density unspecified for a reason that will become clear shortly. First, we redefine
the problem as a belief-MDP parameterized by the pair of log-likelihood ratios zc, zg . In the continuum limit, this model
is equivalent to the following two-dimensional Ornstein-Uhlenbeck process over this belief space [16]:

d~z = (~a− Λ~z)dt+ Σd ~W, ~a =

(
ac
ag

)
, ~Λ =

(
λc λcg
λgc λg

)
zc := log

Pτ (C = c0)

Pτ (C = c1)
zg := log

Pτ (G = g0)

Pτ (G = g1)
(3)

The drift vector ~a contains the expected value of log-likelihood ratios of the evidence for both stimuli, and Σ is the
covariance matrix of those ratios. d ~W are i.i.d. increments from a Wiener process, the diagonal entries of Λ are AR
coefficients, and its off-diagonal elements are mutual excitation terms that will be non-zero if P (sC , sG | C,G) 6= P (sC |
C)P (sG | G). We can set Σ to be the identity matrix w.l.o.g. because it is indeterminate with Λ. This formulation is
advantageous because (a) we only specify ~a and Λ rather than observations and their probabilities, and (b) transition
densities for the sampling actions are mixtures of Gaussians with means ±~a− Λ~z and identity covariance. We discretize
time at dt = 1. We discretize the belief space to a 110×110 grid between±3 in both dimensions, and solve it by backward
induction in discrete time with the horizon set well beyond typical decision times.

3 The Flanker task
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Figure 1: Optimal policies for flanker task. Left: Optimal policy for
flanker with spatial uncertainty and obligatory sampling of both stimuli
(model 1). Right: same model with ability to sample stimuli indepen-
dently (model 3). Dashed contours mark possible FTR policies.

The Flanker task [6] requires subjects to iden-
tify a central target stimulus (e.g. > or <) in
the presence of interfering flankers that may
be either congruent or incongruent with the
target (e.g. >>>>> vs. <<><<). Subjects
are slower and less accurate on incongruent
trials, and guess below chance on fast re-
sponses [8]. This effect has been explained in
sequential sampling models by making one
of three different assumptions: (a) that per-
ceptual uncertainty makes samples from tar-
get and flankers correlated [20]; (b) that sub-
jects have a bias to expect congruent trials
[20]; and (c) that a shrinking attentional spot-
light admits flanker samples into decisions
early but not late [19]. We show how all three
solutions can be optimal under different con-
ditions. We model the central target stimu-
lus as G and the surrounding flankers as C,
with the reward function reflecting the true
response rule. Specific parameters values are
not critical to our claims – here we used 0.3 and 0.1 for context and target drifts (since there are more flankers than target).

The first model we consider has no ability to direct its attention among the stimuli, but implements spatial uncertainty
by setting the off-diagonal terms of Λ to -0.3. As Fig. 1 (left) shows, the optimal policy for this model is not an FTR
policy. Since congruent samples move the belief faster towards decision, the value of sampling is higher in the congruent
quadrants, which moves the decision boundary farther in the congruent parts of the belief space. This compensation will
reduce or eliminate the effect of congruence on behavior relative to the FTR policy, which cannot make this adjustment to
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the decision boundary. This makes the spatial uncertainty explanation more compatible with fixed-threshold than with
BRO policies. The second model we consider (not shown) sets the spatial uncertainty to zero, which makes the BRO and
FTR policies equivalent. This model is only compatible with the congruence-bias explanation, under which the agent
is likelier to start in the top-right and bottom-left quadrants, and therefore be faster to respond and more accurate on
congruent trials (this explanation is compatible with all the models we explored).

The third model we consider (Fig 1, right) combines spatial uncertainty with the ability to selectively sample from either
of the stimuli. This model chooses the sample-both action when uncertainty is highest (center of the space), and switches
to sampling only the target once the flankers have been somewhat identified. However, the switch happens at higher LLR
in congruent than incongruent trials, because flanker samples are more useful in congruent trials. In this way, the model
has a rudimentary adaptively shrinking attentional spotlight [19]. In sum, all three previous claims about explanations
for flanker effects can be framed as normative claims, under different policy spaces and action sets.

4 The AX-CPT and Prospective Memory tasks
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Figure 2: Optimal policy for AX-CPT (left) and Prospective Memory
(right). Dashed contours mark possible FTR policies.

Next we tackle two tasks in which the re-
sponse rules are more complicated than sim-
ply marginalizing over one stimulus. The
first is the symmetric AX Continuous Perfor-
mance Test (AX-CPT) [15]. In the symmetric
AX-CPT, participants see one of two context
stimuli (by convention labeled ‘A’ or ‘B’) fol-
lowed by one of two targets (‘X’ or ‘Y’), and
make one response (e.g. ‘left’) to AX and
BY pairs, and the other (e.g. ‘right’) to AY
and BX pairs. This task is among the sim-
plest that require the composition of stim-
uli to make a decision, and as such is a use-
ful test-bed for understanding more complex
decision making. To model this task in our
framework we treat the first stimulus (‘A’ or
‘B’) as context and the other as target, and
use the true response rule for the reward
function. We set both drifts to 0.2 and the
context decay portion of Λ to 0.1 (as before, the results are not strongly dependent on these parameters).

Fig. 2 (left) shows the optimal policy for this task. The BRO agent samples both stimuli until it has enough evidence for
one, and then samples just the other. With respect to the decision, the BRO policy is once more not contained in the space
of FTR policies. Rather, it makes the prediction that the decision bounds w.r.t. one stimulus widen as the posterior of the
other concentrates. As above, this is again because the value of sampling increases – this time due to the structure of the
task rather than interference. The intuition is that if the agent is sure that the first stimulus is ‘A’, then, distinguishing
between ‘X’ and ‘Y’ is valuable, since that will allow a correct response. If the agent is uncertain about the context
stimulus, distinguishing between the target stimuli is less useful, because responses based on one stimulus alone will
have high error probability (up to 50% if all trial types are equally likely). This threshold increase also appears in the BRO
(but not FTR) policy for the general multihypothesis setting [3]. As such, it is a candidate prediction for distinguishing
between BRO and FTR policies. We suspect that a stimulus noise manipulation in AX-CPT could be used to test this
prediction: more noisy signal of one stimulus should result in faster decisions. This is counterintuitive because typically
one would expect a more difficult stimulus to result in a slowdown rather than a speedup.

The final task we investigate is the prospective memory task [5], which, we speculate, may provide a evidence for this
signature of BRO policies. This task investigates the ability to maintain long-term goals in the face of an ongoing task by
asking subjects to make a sequence of simple two-alternative choices (e.g. ‘is a number odd or even?’) while keeping in
mind an additional task goal (e.g. ’press a third button if the number is 10’). The intention superiority effect in this task is
the fact that correct task responses are faster when the prospective cue is present. That is, subjects are faster to respond
that 10 is even than that other numbers are even.

We model the task as a three-alternative forced choice, with the context samples reflecting the long-term task (‘is the
number 10?’) and the target samples reflecting the ongoing task. The parameters are identical to those used in the
AX-CPT model, except for the addition of the uncertainty between the context and target (because 10 is also even), and
a larger grid in the context dimension to better illustrate the boundary widening. As Fig. 2 (right) shows, the BRO
policy in this task has narrower decision bounds on the parity task if the 10-detection evidence is stronger. This means,
counterintuitively, that the threshold on declaring a stimulus as even is lower when the stimulus is ‘10’, which may
provide a normative explanation for the intention superiority speedup noted above.
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5 Discussion and conclusion

We have explored he difference between assuming a fixed response threshold and computing fully Bayes-optimal policies
for a number of different tasks that can be expressed within our framework for modeling multi-stimulus decisions. We
also explored the impact of the available action sets on predicted behavior. We have shown that the differences between
Bayes-optimal and fixed-threshold policies yield qualitative differences in predictions across a number of tasks, and
speculated on settings where these predictions may be tested. Future work will investigate these predictions, and explore
the subtleties of optimal policies in explaining human behavior. On the methodological front, we have demonstrated the
power of exploiting equivalences between the probabilistic, MDP, and dynamical systems formulations of the same
problem: equivalences that are not necessarily new, but not frequently used in either the RL or mathematical psychology
communities. We believe that this approach can be further exploited in the future to continue bridging these related
approaches to understanding decision-making.
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